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Abstract An interval arithmetic based branch-and-bound optimizer is applied to
find the singular points and bifurcations in studying feasibility of batch extractive
distillation. This kind of study is an important step in synthesizing economic industrial
processes applied to separate liquid mixtures of azeotrope-forming chemical compo-
nents. The feasibility check methodology includes computation and analysis of phase
plots of differential algebraic equation systems (DAEs). Singular points and bifurca-
tions play an essential role in judging feasibility. The feasible domain of parameters
can be estimated by tracing the paths of the singular points in the phase plane; bifur-
cations indicate the border of this domain. Since the algebraic part of the DAE cannot
be transformed to an explicit form, implicit function theorem is applied in formulating
the criterion of bifurcation points. The singular points of the maps at specified process
parameters are found with interval methodology. Limiting values of the parameters
are determined by searching for points satisfying bifurcation criteria.
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1 Batch extractive distillation and elements of the feasibility study

Distillation as a process used for separating liquid components is based on volatility
difference between the components to be separated. Volatility depends on tempera-
ture, pressure, and the composition of the mixture. The liquid mixture is boiled; the
more volatile component has a greater fraction in the emerging vapor than in the
liquid. Repeated boiling and condensation produces a set of liquid and vapor streams
flowing counter-current way in a distillation column. The components are enriched at
the two ends of the column.

At given pressure the boiling temperature depends on the liquid composition. Vol-
atility depends heavily on composition in case of mixtures that behave in a strongly
non-ideal way. Some component pairs exhibit identical volatility at a certain com-
position, called azeotrope. Since boiling such a mixture produces vapor of identical
composition, the components cannot be separated in this way. Well known examples
are: ethanol and water, acetone and methanol, chloroform and ethyl acetate, toluene
and methanol, etc.

Extractive distillation processes apply a third component, the so-called entrainer,
to make the separation feasible. There are several variants of these processes accord-
ing to the volatility relations between the components, and according to the several
technical opportunities to be chosen. A usual configuration is shown in Fig. 1. This is
a batch process, i.e., this process works up a given finite charge of mixture of compo-
nents A and B to be separated. The process itself is a semi-batch or fed-batch nature in
the sense that entrainer E is pumped to the system continuously during the separation
step of the process.

The charge is loaded to the boiler (vessel) situated at the bottom of the column.
This vessel is also called “the still.” The composition in the still will be denoted by xS
(x is an array of mole fractions, and xS is the array of mole fractions in the still).

The still is boiled, and vapor stream of flow rate V is driven through the column.
The vapor emerging from the top of the column is condensed. A part of the conden-
sate, with flow rate L, is led back to the top of the column. The other part of the
condensate is removed as distillate, with flow rate D. Its composition is denoted by
xD. An important parameter of the process is the reflux ratio R = L/D. When no

Fig. 1 BED in a rectifier
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distillate is removed but all the condensate is led back as reflux (i.e., when D = 0 and
L = V), we speak about total reflux.

The entrainer stream is pumped to the column with flow rate F; its composition
is denoted by xF . The entrainer stream usually consists of pure component E; its
composition is xF = [0, 0, 1]. (Composition anywhere in the system is denoted by an
array of the mole fractions xA, xB, and xE. Thus, the above value of composition xF
should be read as xAF = 0, xBF = 0, and xEF = 1. These letters represent mole fraction
of component A in stream F, mole fraction of component B in stream F, and mole
fraction of component E in stream F, respectively. Since the sum of mole fractions
should give unity, two of them are sufficient to determine the composition.) Feed ratio
F/V is another important parameter of the process. The feed is related to the vapor
stream because the boiling power is usually constant for technical reasons, and this
gives rise to approximately constant vapor flow rate in time.

Production of components in specified purity and acceptable recovery is possible
if the process parameters are kept in a so-called feasible domain. This domain is not
known in advance. Random trials usually result in finding the process infeasible, even
if it is feasible with appropriate parameters. The feasibility methodology suggested by
Lelkes et al. [1], and successfully applied, e.g., by Lelkes et al. [2] and Rév et al. [3],
is a procedure used for determining the feasible domain by systematic analysis of the
phase maps of DAEs that are set up as an approximate model of the process.

2 Model equations and phase map analysis

The differential equation describing the change of mole fractions x along the column
at a given time instant is

dx
dh

= V
L

(
y (x) − y∗ (x)

)
, (1)

where h is an internal running variable, y∗(x) and y(x) are multivariate functions. The
latter has two forms depending on which section of the column is modeled. Its form
in the upper section is

y = R
R + 1

x + 1
R + 1

xD, (2)

whereas its form in the lower section is

y =
(

R
R + 1

+ F
V

)
x + 1

R + 1
xD − F

V
xF . (3)

y∗(x) is determined by the following system of Eq. 4—10:

y∗
i P = γixip◦

i (i ∈ {A, B, E}) , (4)

log10 p◦
i = Ai − Bi

T − 273.14 + Ci
(i ∈ {A, B, E}) , (5)
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ln γi =

∑

j∈{A,B,E}
τjiGjixj

∑

l∈{A,B,E}
Glixl

∑

j∈{A,B,E}

xjGij∑

l∈{A,B,E}
Gljxj

⎛

⎜
⎝τij −

∑

n∈{A,B,E}
xnτnjGnj

∑

l∈{A,B,E}
Gljxj

⎞

⎟
⎠ (i ∈ {A, B, E}) (6)

τij = Uij

RGT
(i, j ∈ {A, B, E}) , (7)

Gij = exp
(−αijτij

)
(i, j ∈ {A, B, E}) . (8)

∑

i∈{A,B,E}
y∗

i = 1. (9)

Here RG=1.98721 is a universal constant; Uij, αij = αji, Ai, Bi, Ci(i, j ∈ {A, B, E}), and P
are model parameters amongst which P is the system’s pressure (measured in Hg mm),
the others are parameters of the thermodynamic model. The mole fractions xA and xB
are independent variables; T(boiling temperature), γi (activity coefficient), p0

i (pure
component’s vapor pressure), and the auxiliary variables τi, and Gij (i, j ∈ {A, B, E})
are dependent variables. Mole fraction of the entrainer component xE depends on xA
and xB at any composition via normalization:

∑

i∈{A,B,E}
xi = 1. (10)

The methodology is demonstrated using the above system of equations, and a par-
ticular set of parameter values given in Tables 1 and 2. These parameters describe
the material system of acetone (component A), methanol (component B), and water
(component E) at atmospheric pressure (P = 760 Hg mm). Methanol and acetone
form an azeotropic mixture (called an ‘azeotrope’) at xacetone ≈ 0.821, at this pressure.
All over our study, the specified distillate composition is xD = [0.94, 0.025, 0.035]
(acetone, methanol, water). Pure water is applied in the entrainer feed, i.e., xF =
[0.0, 0.0, 1.0]. Two sub-problems are considered. One is the properties of the phase
curve of the solution of the DAE

(1), (2), and (4)–(10) (RP)

and the other one is the phase map properties of the DAE

(1), (3), and (4)–(10). (EP)

Solution of RP with xD as initial value has a single projection to the phase space
[xA, xB]. This projection is called the rectifying profile.

The still composition xS (see also Fig. 1) is not known; moreover, it changes with
time. Thus, a solution is computed to each supposed xS by solving EP with xinitial = xS
as initial value, and they are also projected to the phase space [xA, xB]. These projec-
tions are called extractive profiles. Thus, a phase map consisting of the single rectifying
profile and a set of extractive profiles is formed. The map of the extractive profiles,
without considering the rectifying profile, is called the extractive profiles’ map.
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Table 1 Parameters Ai, Bi,
and Ci

i Ai Bi Ci

A 7.11714 1210.595 229.664
B 8.08097 1582.271 239.726
E 8.07131 1730.63 233.426

Table 2 Parameters Uij,
and αij

i j Uij Uji αij = αji

A B 399.395 −16.784 0.292
A E −47.613 1919.523 0.291
B E −347.817 −347.817 0.302

The physically interpretable phase domain is a triangle in the plane of xA and xB.
(The vertices are [0,0], [1,0], and [0,1] in the plane; these correspond to the composition
arrays [0,0,1], [1,0,0], and [0,1,0], respectively.)

A necessary condition of process feasibility is that the extractive profiles connect
all the still compositions xS to the rectifying profile as xS moves in the triangle during
the process.

The still vessel contains the residue after distillation. The farther xS moves from
vertex A, the less amount of component A remains in the residue, and the greater
recovery of component A is reached. The process is feasible even if a small recovery
can be reached, but great recovery is targeted. Thus, how far xS can be moved is also
an important aspect.

Singular points of the extractive profiles’ map play a key role in assessing feasibility
and estimating maximum recovery.

Singular points of the DAE are classified in this article according to the usual con-
vention in the literature. Our equations are autonomous, and do not have periodic
solution. (Non-existence of any periodic solution follows from thermodynamics.) A
singular point is called stable if all the phase curves approach it from its neighbor-
hood, and called unstable if they approach it from the neighborhood when computed
in opposite direction, which can be accomplished by changing the sign of the right-
hand side of the differential equations. Saddles have two approaching solutions and
two solutions going away in their neighborhood, together with four separated phase
curve bundles of hyperbolic nature. Other (degenerate) solutions do not occur, unless
in bifurcation points. We speak about bifurcation when the map topology suddenly
changes in function of the parameters [4, 5]. Points where singular points appear,
disappear, or change type are called bifurcation points.

An example phase map is shown in Fig. 2. The task is separating acetone (A) from
methanol (B), with water as entrainer (E). The applied parameters are R = 4, and
F/V = 0.58.

Here an unstable node UN of the extractive profiles’ map is situated near vertex
E, and a saddle point S2 is found well inside the triangle. (Our notation originates
from the relevant literature of these chemical systems [1].) Two bundles of extractive
profiles come from UN along the separatrix from UN toward S2. One of them turns
toward the BE edge, the other one turns toward stable node SN. This SN must exist
somewhere outside the triangle; but the bundle of extractive profiles is dense enough
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near the base to illuminate a node on the edge. The other two bundles around S2 come
from the direction of the AB edge, and their destination is the same as those coming
from UN. Another unstable node must also exist somewhere outside the triangle, over
its AB edge.

This is a map of a feasible process because the xS composition can move from the
AB edge near vertex A up to the two stable separatrices of S2, and all the extractive
profiles along its path cross the rectifying profile. In other words, all the points of the
triangle to the right from those two separatrices are feasible still compositions. The
points on, and to the left of, the stable separatrices of S2 cannot serve as feasible still
compositions because the extractive profiles computed from them do not reach the
rectifying profile.

Thus, these two separatrices form a boundary to the feasible still composition. The
distillate composition xD cannot be kept at its specified value when xS reaches and
crosses this boundary, but it also moves farther from vertex A. Production of distillate
is stopped at this moment, and some amount of component A remains in the still.
Thus, perfect recovery of A cannot be achieved with this process.

The appropriate process parameters can be estimated by computing and analyz-
ing the phase maps with systematically changed parameter values. Location of the
singular points, and the parameter values at which some singular points appear or
disappear, play a key role in assessing feasibility. For example, the process with the
given parameters is qualified feasible according to the phase map in Fig. 2 because
the stable node SN is situated below the AE edge. SN is situated inside the triangle
at small F/V value, and the extractive profiles do not cross the rectifying profile in
that case. The map changes with R, as well. Location of S2 is also influenced by R
and F/V.

The singular points, especially the saddle points, cannot always be determined with
satisfactory precision; moreover, some details of the map are missed because unstable
nodes are not determined, and singular points out of a physically interpretable region
are not studied. Bifurcation cannot always be recognized because the computed maps
are not detailed enough. Existence of a singular point cannot be excluded merely on
the basis of not finding it with a given mesh over the studied domain. In contrast to this
lack of information, interval arithmetic has the potential of excluding the existence
of some solutions, and finding the bifurcation points according to their mathematical
criteria.

Fig. 2 Phase map at R = 4
and F/V = 0.58
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3 Interval methodology

For our engineering problems we decided to use an available interval optimization
tool, the one recently developed at the University of Szeged. The algorithm itself is
an improved version of the branch-and-bound global optimization procedure of the
C-XSC Toolbox [6], and it is implemented using the Profil/BIAS interval arithmetic
library of Knüppel [7]. The interval inclusion functions are evaluated with a combi-
nation of the natural interval extension and a first-order centered (mean-value) form
[8]. The accelerating tools are the monotonicity, mid-point, cut-off, and concavity
tests, and a step of the interval Newton–Gauss–Seidel iteration, all discussed in [6].
The interval subdivision rule is the one named as ‘C/3’ in [9]. This rule means that
each actual interval is subdivided to have three subintervals in the direction for which
the range of the objective value changes the most within the respective interval. The
stopping criterion of the algorithm is based on the width of the actual box: if each
component’s width is smaller than a prescribed value (10−2–10−12, depending on the
particular application) then the box is inserted to the list of candidate enclosures for
the global minimizers.

Beside the basic branch-and-bound procedure, the algorithm contains a verifica-
tion procedure [10] based on the interval Newton-step in order to check the existence
and local uniqueness of the candidate optimizers. Further details of the algorithm
can be found in [9,11]. Global optimization algorithms can be applied to solve
both minimization problems and root finding problems, because any root-finding
problem

fi(x1, x2, . . . , xN) = 0 (i = 1, 2, . . . , N) (11)

can be re-formulated as an optimization problem

min
x

N∑

i=1

f 2
i (x). (12)

If (11) has a solution then it is a (global) minimizer of (12) because the sum of squares
cannot be negative. That is, if the global minimum of (12) is guaranteed to be positive
over a given search domain then (11) has no solution over the same domain. All over
our study we apply this re-formulation for determining zeroes of equations.

Singular points can be computed even outside the composition triangle; this oppor-
tunity is constrained to a small neighborhood around the triangle because of the math-
ematical form of the model. Thus, we searched for singular points till xMethanol = −0.1;
but no farther.

The numerical computations were run on a Pentium IV PC (with 1 Gbyte of RAM
and a 1.4 GHz CPU) under Linux operating system.

4 Singular points

Singular points of (RP) and (EP) are characterized by a zero value of the differentials
in Eq. 1. This is fulfilled when the right-hand side equals zero, i.e., when

V
L

(
y (x) − y∗ (x)

) = 0. (13)
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Thus, singular points of (RP) satisfy the following algebraic equation system:

(2), (4)–(10) and (13). (SRP)

Singular points of (EP) satisfy the following algebraic equation system:

(3)–(10) and (13). (SEP)

4.1 Singular points of (RP)

Singular points of RP are searched in order to determine the minimum value of R
above which the phase curve of RP, i.e., the rectifying profile, is long enough to cross
the extractive profiles arriving to the stable node. The length of the profile has a
sudden jump at this value.

Values of Uij, αij = αji, Ai, Bi, Ci(i, j ∈ {A, B, E}), RG, P, and R are given; values of
γI , p0

i τi, Gij, xi, yi, y∗
i , (i, j ∈ {A, B, E}), xE and T are unknown. Equation system SRP is

transformed to a global minimization problem. The independent variables are xA, xB,
and T. The searched box is {[0,1], [0,1], [200, 500]}. (Temperature is measured in Kel-
vin.) The depending variables are expressed and substituted. The objective function
is

∑

i∈{A,B,E}

(
yi (x) − y∗

i (x)
)2 + (xA + xB + xE − 1)2 , (14)

where xE could be expressed as xE = 1 − xA − xB and substituted to the constraint
system, but the argument of the logarithms in Eq. 5 and 6 could easily become nega-
tive during the search in that case because interval arithmetic is used. That is why the
second member appears in the objective function.

Several solution problems are formed by varying R.
Solutions of (SRP) are found relative easily by the solver. The present interval

tool is able to find all the singular points at any specified R, except very near the
bifurcation points. As a result, a bifurcation diagram is plotted and shown in Fig. 3.
The squares, lined up along imagined curves of negative slope, represent stable points;
the same is true for points denoted with diamonds. The triangles, lined up along an
imagined curve of positive slope, represent unstable points. Since the phase curve of
RP is started from xD, it does not run below xA = 0.7 if R is smaller than 0.629, but
stops at the upper stable point. At R > 0.63, however, the phase curve reaches below
xA = 0.1, a stable point in the lower curve.

Earlier we tried to explore the situation via subsequently solving SRP using
GAMS/CONOPT [12,13] with varying R. We could not find the instable nodes in
that way. Instead, we found the solutions represented by diamonds, at R < 0.6.

All the points shown in Fig. 3 are found with this interval method except the right-
most square at about R ≈ 0.63 and xAcetone ≈ 0.7. The nearer R is specified to this
value, the longer time is consumed by the solver. The reason of this phenomenon must
be that we encounter a bifurcation here.

4.2 Singular points of (EP)

Values of Uij, αij = αji, Ai, Bi, Ci(i, j ∈ {A, B, E}), RG, P, R, and F/V are given; val-
ues of γi, p0

i , τi, Gij, xi, yi, y∗
i , (i, j ∈ {A, B, E}), xE, and T are unknown. Equation system

SEP is transformed to a global minimization problem. The independent variables,
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Fig. 3 Plot of xAcetone component of the found singular points in function of R
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Fig. 4 Singular point paths with evolving F/V at total reflux

the searched box, and the objective function are the same as in the case of SRP. The
depending variables are expressed and substituted. Several solution problems are
formed by varying R (between 0.1 and 10.0) and F/V (between 0 and 1.0).

Solutions of (SEP) are also found relative easily by the solver. Series of solutions
with changing F/V at fixed R are shown in the subsequent figures. These results are
interesting in the sense they reveal how the location of bifurcation changes with R.
Earlier we thought that the critical value of F/V can be determined by computing
when the stable node SN reaches the base line (the AE edge). This is, however, valid
at total reflux only. This total reflux case is shown in Fig. 4. Four singular points of
the map are located in the arbitrary small neighborhoods of the three vertices, and
the arbitrary small neighborhood of the azeotrope, if F/V approaches zero. These
points are shifted with increasing F/V as it is shown in Fig. 4. The singular points
are determined by stepwise incrementing F/V. The stable node originated from the
azeotrope moves toward the AE edge and meets just at the edge another point (S1)
originated from the acetone vertex. At higher values the stable point moves on the
same edge toward the water vertex. Thus, the minimum feed ratio is approximately
0.19 if total reflux is applied.
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Fig. 5 (a) Singular point paths
with evolving F/V at R = 10
(b) Singular point paths with
evolving F/V at R = 4
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All the singular points move in the interior of the triangle at decreasing R. How the
singular points move in the triangle is shown in Fig. 5 with R = 10, R = 4. Unstable
node UN originated from the water vertex is shifted so little that it practically remains
located there. Stable node SN does not start from the azeotrope, but seems coming
from a point on the acetone/methanol edge, between the azeotrope and the methanol
vertex. Saddle S1, originated from the acetone vertex, does not move on the base line.
SN and S1 meet at an F/V depending on R.

There is a bifurcation at F/V ≈ 0.207 if R = 4 is specified (Fig. 5b). Above this
value a wide bundle of curves are directed toward a point somewhere outside the
triangle. Thus, the minimum feed ratio is F/V ≈ 0.207 if R = 4 is applied. The stable
node originated from the azeotrope does not reach the acetone/water edge. A second
bifurcation happens at F/V ≈ 0.55. A new stable point SN− appears outside the
composition triangle and moves toward the water vertex. There is also another saddle
S−, as its counterpart, but not shown in the figure. This new bifurcation has no effect
on the feasibility of the process.

All the mentioned singular points are determined with the present interval tool
with stepwise incremented F/V parameters. The bifurcation points cannot be exactly
determined in this way. The nearer F/V is specified to this value, the longer time is
consumed by the solver. The reason of this phenomenon must be that we encounter
a bifurcation here.
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5 Bifurcation points

Those parameter values at which the bifurcations occure constitute the border of
the feasible domain. However, computation work consumed for finding the singular
points increases when the bifurcation points are approached.

Bifurcation points can be approximately determined via computing singular points
and plotting bifurcation diagrams. Such diagrams are shown in Fig. 6a–c for our prob-
lem. Reliable computation of bifurcations is, however, the target of this section.

Acetone mole fractions of SN and S2 are plotted against F/V at specified R in
Fig. 6a–c. The curves do not meet exactly, but they have to do so at higher F/V. Note
also that singular points far outside the triangle are not computed; that is why some
sequences are imperfect. A saddle point is missing, for example, in Fig. 6c at high F/V.

The meeting point could not be well approximated by simply determining the sin-
gular points with stepwise incremented feed ratio, as mentioned in Sect. 4.2, because
the computation time increases to infinity as the bifurcation point is approximated.
Instead, the criterion of bifurcation is applied as a new constraint in the model.

The character of a singular point can be analyzed by linearizing the differential
equation in its neighborhood [4,5,14,15].

Accordingly, Eq. (1) is approximated by

dx
dh

= Ax, (15a)

where matrix A is the Jacobian computed at the singular point x:

aij = ∂

∂xj

(
V
L

[
yi (x) − y∗

i (x)
])

∣∣∣∣
x
(i ∈ {A, B}, j ∈ {A, B}). (15b)

Singular points that are not bifurcation points are characterized by non-zero real
part in each eigenvalue of the coefficient matrix A. Bifurcation points are character-
ized by at least one eigenvalue with zero real part [4,5,14,15]. Only simple singular
points that are characterized with only real eigenvalues occur in our case and, conse-
quently, irregularity is simply indicated by a zero determinant of A. In this case, the
criterion of bifurcation is:

det(A) = 0. (16)

Thus, the equation system to be solved is the following:

(3)–(10), (13), and (16) (17)

with F/V considered as a variable, while R is fixed.
However, the entries of the Jacobian (Eq. 15b) cannot be simply computed, because

the function to be differentiated by xA and xB cannot be expressed in them. This is
because variable T (the boiling temperature) cannot be algebraically discarded. In
practice, we have the following relations:

aAA = ∂
∂xA

fA (xA, xB, T)

∣∣∣
xA,xB

aAB = ∂
∂xB

fA (xA, xB, T)

∣∣∣
xA,xB

,

aBA = ∂
∂xA

fB (xA, xB, T)

∣∣∣
xA,xB

aBB = ∂
∂xB

fB (xA, xB, T)

∣∣∣
xA,xB

,
(18)
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Fig. 6 (a) Bifurcation diagram at R = 10 (b) Bifurcation diagram at R = 4 (c) Bifurcation diagram
at R = 3

where T is an implicit function of xA and xB. An imagined explicit form is denoted by
ϑ :

T = ϑ (xA, xB) . (19)
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In order to determine the partial derivatives, the chain rule can be applied:

aij = ∂fi (x, T)

∂xj

∣
∣
∣
∣
x,T=ϑ(x)

+ ∂fi (x, T)

∂T

∣
∣
∣
∣
x,T=ϑ(x)

× ∂ϑ (x)

∂xj

∣
∣
∣
∣
x

(i ∈ {A, B}, j ∈ {A, B}).

(20)

The above partial derivatives of fi according to the mole fractions can be expressed
analytically, as follows.

fi (x, T) is a function of x and T, but T depends implicitely on x. Thus, fi (x, T) is a

variant of
�

f i (x)

f̂ i (x) = V
L

[
yi (x) − y∗

i (x)
]

(i ∈ {A, B}, j ∈ {A, B}). (21)

where the dependence on T is eliminated.
Thus, elements of the Jacobian can be expressed as

aij = ∂yi (x)

∂xj

∣
∣
∣
∣
x
−

(
∂gi (x, T)

∂xj

∣
∣
∣
∣
x,T=ϑ(x)

+ ∂gi (x, T)

∂T

∣
∣
∣
∣
x,T=ϑ(x)

× ∂ϑ (x)

∂xj

∣
∣
∣
∣
x

)

,

i ∈ {A, B}, j ∈ {A, B}, (22)

where y∗
i is expressed as a function y∗

i = gi(xA, xB, T):

gi (xA, xB, T) = γi (xA, xB, T) xip0
i (T)

p
i ∈ {A, B} (23)

The actual vapor composition y expressed in the form of (3) does not depend on
temperature. Function gi(x, T) is used to express y∗ in function of x and the explicitly
unknown T which in turn depends on x via ϑ .

The derivatives of y are given by

∂yi

∂xj
=

{
0, i �= j,

R
R+1 , i = j,

i ∈ {A, B}, j ∈ {A, B}. (24)

In order to determine the derivatives of y∗
i (x), expressed as in (24), gi(xA, xB, T)

should be differentiated according to its arguments:

∂gi

∂xj
= p0

i (T)

p
·
{

xi
∂γi(x,T)

∂xj
, i �= j

xi
∂γi(x,T)

∂xj
+ γi (x, T) i = j

i, j ∈ {A, B} (25)

∂gi

∂T
= xi

p

(
p0

i (T)
∂γi (x, T)

∂T
+ γi (x, T)

∂p0
i (T)

∂T

)
, i ∈ {A, B} . (26)

The sum of the mole fractions should equal unity; this condition is applied to eliminate
one of the mole fractions:

xE = 1 −
∑

xk k ∈ {A, B} , (27)

Equations 25 and 26 contain the partial derivatives of Eq. 5 and 6, respectively:

∂p0
i

dT
= 10

(
Ai− Bi

T−273.14+Ci

)

· Bi · ln (10)

(T − 273.14 + Ci)
2 = p0

i
Bi · ln (10)

(T − 273.14 + Ci)
2 , (28)
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∂γi

∂T
=γi

⎛
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(29)

where ∂τij
∂T = − τij

T and − ∂Gij
∂T = Gij

(
αij

∂τij
∂T

)
.

∂γi

∂xj
=γi

⎛
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(30)

The partial derivatives of ϑ according to the mole fractions are also difficult to
determine, because function ϑ is not known explicitly. However, the implicit function
theorem can be applied. T is determined according to Eqs. 4 and 9. Combination of
these two equations leads to the criterion

P (xA, xB, T) = γE (xA, xB, xE, T) xEp◦
i (T) + ∑

i∈{A,B}
γi (xA, xB, xE, T) xip◦

i (T)

xE = 1 − xA − xB.
(31)
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Table 3 Interval enclosure of
a bifurcation point of (RP) at
specified xD

R [0.6290669441223144,
0.6290836334228516]

xacetone [0.6932788372039798,
0.6932974338531500]

xmethanol [0.0201442718505859,
0.0201454162597657]

T [333.1959158182144165,
333.1962019205093384]

Table 4 Interval enclosure of
bifurcation points of the (EP)
at two reflux ratios

R = 4 R = 10

F/V [0.2063720703125000,
0.2069946289062501]

[0.1578170891437115,
0.1585855111005144 ]

xacetone [0.5877075195312502,
0.5881469726562504]

[0.7042266845703127,
0.7047851562500003]

xmethanol [0.0673706054687500,
0.0677490234375001]

[0.0400826140894999,
0.0404432357242396]

T [333.9262008666992187,
333.9355468750000001]

[332.6806640624999999,
332.6953125000000001]

The differentials of P according to the mole fractions xA and xB should be zero,
because P is specified as a constant:

γkp◦
k − γEp◦

E +
∑

i∈{A,B}
xi

(
p◦

i

[
∂γi

∂T
− ∂γE

∂T
+ ∂γi

∂xk
− ∂γE

∂xk

]
+ γi

dp◦
i

dT

)
= 0 k ∈ {A, B}.

(32)

From here, the a derivatives of T are

∂ϑ

∂xj

∣∣∣∣
x

= −
(

∂P(xA,xB,T)
∂xj

)

(
∂P(xA,xB,T)

∂T

) . (33)

Thus, the bifurcation points of the DAE (RP) can be located by finding the roots of
the equation system

(2), (5)–(8), (10), (16), (31) (BRP)

and the bifurcation points of the DAE (EP) can be located by finding the roots of the
equation system

(3), (5)–(8), (10), (16), (31). (BEP)

These equation systems are solved in the same way as SRP and SEP, in Sect. 4.
Computed results are collected in Tables 3 and 4. The numbers shown in these

Tables are the interval enclosures of the exact values, respectively, according to the
applied model. The upper bounds are shown below the lower bounds; the identical
leading digits are underlined for easy comparison.

The interval shown in the first row of Table 3 is interpreted in such a way that
the minimum reflux ratio is not higher than 0.6290836334228516, and not lower than
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0.6290669441223144. Use of so many digits is meaningless in practice; however, the
bounds are valid. The intervals shown in the first row in Table 4 are interpreted in a
similar way: The minimum feed ratio of a feasible process at R = 4 and R = 10 are
enclosed in the given intervals.

About 2,186,495 function evaluations were performed to achieve the results of
Table 3; 11,104,607 and 7,266,434 evaluations were performed to obtain the results of
Table 4 for R = 4 and R = 10, respectively.

6 Conclusion

Feasible domain of process parameters are difficult to determine in case of batch
extractive distillation, an important industrial process. The check of feasibility is based
on analyzing the phase maps of DAE models describing the possible composition pro-
files along the distillation column. The feasible domain is normally explored by tracing
the shifts of the singular points in the phase space. The border of the feasible domain
is detected by bifurcations.

An interval arithmetic based branch-and-bound optimization tool is applied to
analyze phase maps of the DAE models. The root search problems are first trans-
formed to minimum problems with sum of squares as objective function. Using this
tool, we are able to reliably find all the singular points of the maps. The tool is also
successfully applied to find bifurcation points when the bifurcation criterion is also
included in the model.

Bifurcation is detected in the studied problems simply by zero determinant of
the linearized system in the singular points. This criterion is expressed in a rather
complicated equation system because implicit function theorem has to be applied for
determining the Jacobian.

Studying the maps of the acetone (A)–methanol (B)–water (E) system, we find
that there are four singular points (two saddles, a stable node, and an unstable node)
at high reflux ratios. At total reflux and increasing feed ratio, the two saddles move
along the AE and the BE edges, respectively, toward the water vertex (component
E); the stable node meets the saddle on the AE edge, and they change stability. At
finite reflux ratio, the singular points are found inside the triangle; the stable node
and the saddle point initiated from vertex A collide, and bifurcation occurs. Both
colliding singular points vanish after the collision, and the phase curves lead out from
the triangle through the AE edge.

These results can be successfully applied in exploring the feasible domain of
the studied and similar problems without dense computation and visualization of
the phase curves. Moreover, the new methodology is a reliable one in contrast to the
graphical methodology which is liable to the risk of failing due to insufficient density
of the map.
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